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MEME: Al has been successfully used in many applications such as
computer vision, automatic speech recognition, natural language processing,
audio recognition, and medical imaging processing and disease diagnosis.
Recently, our group has designed a method to detect a type of epilepsy-benign
epilepsy with centrotemporal spikes, which is the most popular epilepsy with
children. In our method, we use three sources of data: hand-crafted features
from MRI images based on doctors’ knowledge, 3D MRI images and 4D
functional MRI images. The final prediction decision is obtained by fusing the
three prediction results through another neural network. Our idea is to take
advantages of all three data sources which have different strengths and
important features to achieve the best prediction results. We have done many
experiments which show that the proposed method is truly better than any
existing prediction method. Currently, we are working on predicting Autism
disease through video data (including facial expression, movement style, and
voice), genetic features, and MRI images through effective fusion methods.
Future improvements including how to design better Al systems, and how to
use more data sources and how to effectively fuse the data will also be outlined
in this talk.
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#EBH: Computational Problem in Single-Cell Omics Data Analysis

MEME: The rapid development of single-cell multi-omics sequencing
technology has made it possible to explore cells in multiple dimensions (genes,
transcriptions, epigenetics, and even spatial), which has been highly valued by
life science research and has posed new challenges to bioinformatics research.
How to deeply understand the cellular function described by multi-omics data
is a difficult problem and how to achieve feature complementarity of multi-
omics data poses a computational challenge. In this talk, I will discuss the
related computational problem including cell type, cell communication and the
multi-omics data integration.
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& H: DNN based Computational Analyses for Motifs in Biological
Binding Sequences

WERHE. Transcription factors (TFs) are proteins that bind to specific DNA sequences
to regulate the expression of the genome. The identification of transcription factor binding
sites (TFBSs) is extremely important for understanding the process of gene expression. On
the one hand, classic deep learning methods for TFBSs prediction usually fail to capture
the dependencies between genomic sequences since their commonly used one-hot codes
are mutually orthogonal. On the other hand, these methods usually perform poorly when
samples are inadequate. To address these two challenges, we developed a novel language
model for mining TFBSs using human genomic data and ChIP-seq datasets, named
Transcription Factors Fine-tune Language Model (TFFLM). First, we compared TFFLM
with the existing widely used methods on 69 datasets and we achieved the state-of-the-art
performance. Moreover, we conducted comparative experiments on complex TFs such as
POLR2A and small data set such as KMD5A and the results show that TFFLM still
achieved a significant improvement. Finally, through visualization analysis of one-hot
encoding and TFFLM, we found that one-hot encoding completely cut off the dependencies
of DNA sequences themselves, while TFFLM using language models can well represent
the dependency of DNA sequence.
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HwEBH: Nucleosome assembly and disassembly in vitro are governed by
chemical Kinetic principles

WEE: As the elementary unit of eukaryotic chromatin, nucleosomes in
vivo are highly dynamic in many biological processes, such as DNA replication,
repair, recombination or transcription in order to allow the necessary factors to
gain access to their substrate. The dynamic mechanism of nucleosome assembly
and disassembly has not been well described so far. We proposed a chemical
kinetic model of nucleosome assembly and disassembly in vitro. In the model,
efficiency of nucleosome assembly is positively correlated with total
concentration of histone octamer, reaction rate constant and reaction time. All
the corollaries of the model were well verified for Widom 601 sequence and the
six artificially synthesized DNA sequences, named as CS1-CS6, by using salt
dialysis method in vitro. The reaction rate constant in the model may be used as
a new parameter to evaluate the nucleosome reconstitution ability with DNAs.
Nucleosome disassembly experiments for Widom 601 sequence detected by
Forster resonance energy transfer and fluorescence thermal shift assays
demonstrated that nucleosome disassembly is the inverse process of assembly
and can be described as three distinct stages including opening phase of the
(H2A-H2B) dimer/(H3-H4)2 tetramer interface, release phase of the H2A -
H2B dimers from (H3—H4)2 tetramer/DNA and removal phase of the (H3—H4)2
tetramer from DNA. The present work confirms that nucleosome assembly and
disassembly in vitro are governed by chemical kinetic principles.
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HEBHE: Radiogenomics and its Clinical Implications
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